Wind turbines have a small physical footprint, but wind farms themselves seem to take up vast expanses of land. Large, empty spaces are the norm in most wind farms, hence why they often share space with farms and pastures. But how do engineers determine the amount of space between wind turbines? And how many turbines can comfortably fit on one acre of land?

Several factors determine the spacing necessary for wind turbines, with size being a major variable. But wind turbines need lots of space, or they’ll suffer a drop in performance. A 2 MW wind turbine may need between 40 and 70 acres of land to avoid interference from other turbines. In practice, the cost of land and associated infrastructure may force companies to space turbines closer together.

Correction: We previously reported that one acre can hold between 40 and 80 wind turbines. This is a gross overestimation, one which was based on erroneous calculations on part of the author. Article updated October 5th, 2021.

Wind Turbine Spacing

Wind turbines need to be spaced appropriately to maximize efficiency. In order to produce electricity, wind turbines need a steady flow of wind, which necessitates a lack of obstacles. This includes other wind turbines. The turbines extract energy from the wind and create an area of turbulence in the immediate area. Wind turbines that are spaced too closely will be less efficient, as they’ll create erratic wind patterns, and there will be less kinetic energy available overall. Therefore, wind turbine spacing is a crucial aspect of planning a wind farm.

But it’s not all about efficiency. Wind turbines placed too close to one another can have several other adverse effects. The turbulence will cause the turbines to oscillate, increasing the wear and tear on the internal machinery, and thus reducing their lifespans. Crowded wind farms also make more noise, which can bother nearby residents.

Wind turbines also need space for the associated infrastructure. They require a large concrete foundation to support their tall frame. There are also power stations and distribution lines that need to be built. Then there are the access roads that meander throughout the wind farm.

After researching the effects of spacing on wind farm efficiency, engineers have decided on an ideal ratio for wind turbine spacing. Turbines placed upstream or downstream of one another should be at least seven rotor diameters apart. This allows for ample space for turbulence to dissipate and wind speeds to recover. Wind turbines laid out side-by-side can be closer together and should be at least three rotor diameters apart. These suggestions are the bare minimum. The more space between turbines, the better.

If that sounds like a lot, that’s because it is. Wind turbine blades can get pretty long, so several rotor diameters is a pretty large distance. To give an example, the 2.2 MW Vestas V-120 is the largest in the Vestas 2 MW series of turbines, with a rotor diameter of 120 meters. That means that to optimize efficiency, the turbines must be 360 meters apart and 840 meters downwind. The V-90 is the smallest turbine in the 2 MW series, with a rotor diameter of 90 meters. So these turbines must be 270 meters apart and 630 meters downwind to remain efficient.

One acre is 4046.86 square meters, so the sides of a square enclosing one acre of land are approximately 63.61 meters long. In other words, you will only be able to fit one industrial-sized turbine on one acre, and the nearest turbine will be several acres away. In the case of the V90, one turbine needs about 42 acres of land, while the V120 will need about 75 acres of land. 

Obviously, these calculations are based on an ideal situation. In practice, actual distances between turbines vary greatly. Large wind farms may be much more crowded, as landowners and wind companies may receive more government subsidies for having more turbines. In these situations, the entire wind farm suffers from diminished efficiency. Also, the formulas behind spacing at wind farms are much more complicated than rotor diameter. Wind speed, terrain, and tower height must also be factored into wind farm configuration.

Read also: Comparative Analysis of Onshore and Offshore Windpower

Land Use

Wind turbines are notable for their small physical footprint. While wind farms do take up large amounts of land, that space is still open for other uses. It’s common to see wind farms share the land with farms, ranches, and pastures. Wind farms might also double as parks and recreation areas. 

Besides the wind turbine itself, wind farms also need room for supporting infrastructure. A 2009 study by the NREL analyzed land-use patterns on 172 wind farms across the United States. They broke down land usage into two categories: the direct impact area and the total land area.

Direct Impact Area

The direct impact area of a wind farm consists of the spaces directly occupied by the specific type of wind turbine and infrastructure. This consists of the turbine and its surrounding foundation, access and arterial roads, power stations and distribution lines, offices, monitoring stations, and storage space. This might also include the area temporarily occupied during the construction of the turbine. The direct impact area of a wind farm tends to be pretty small, especially when compared to other types of power plants, like fossil fuel plants or nuclear power stations.

The NREL report determined that the average wind farm produces 0.4 MW per acre of land that is directly impacted. This takes into account areas that are permanently occupied as well as land that was temporarily impacted during construction.

Total Land Area

The total land area consists of the entirety of the space within the borders of the wind farm. This includes the direct impact area along with the undisturbed lands between the turbines. Due to the relatively large distances between turbines, the total land area tends to be pretty large, even if the direct impact area makes up a small portion of the total wind farm.

The areas that aren’t being directly occupied can be utilized for other purposes, even though they may fall into the boundaries of the wind farm. Farms, parks, and nature preserves are common uses. Major roads and highways may also cut through a wind farm.

The same NREL study also measured the total land area per MW. They found that the average power output per acre when the total land area was accounted for was 0.012 MW per acre.

Wind Farm Configurations

In addition to optimal spacing requirements, there are also configurations that optimize the efficiency of wind farms. Turbine spacing, local geography, and wind patterns must all be taken into account when creating the layout of a wind farm. Most wind farms fall into four general configuration patterns.

Single String

Single string patterns are when the turbines in a wind farm are arranged in a long line, all oriented in the same direction. This reduces interference as there are no turbines upwind or downwind of each other.

Multi-String

Multi string configurations consist of several strings of turbines. While the turbines within a string all face the same way, each string is oriented in a different direction.

Parallel String

Parallel string layouts are where there are several strings of turbines oriented parallel to each other. The strings are usually oriented in rows, though the rows aren’t always the same size.

Cluster

Wind farms can also be arranged in clusters instead of strings. This is where the wind turbines are spread out over the wind farm with no discernable pattern.

Conclusion

Wind turbines need ample space to operate efficiently. They need to be far from obstacles to ensure a steady, undisturbed stream of air. As for how much space exactly, well that depends on the size of the turbine. Larger turbines create larger wakes and more turbulence, and so need more space to maximize efficiency. While the turbines themselves have a small footprint, wind farms are spread out among several acres of land. They’re unique compared to other forms of power as the land can still serve other purposes and usually shares space with farms, parks, and highways. Whereas being near a fossil fuel or nuclear power plant can be bad for your health, hanging out at a wind farm can actually be a pleasurable experience.

Frequently Asked Questions

How many wind turbines can fit on one acre?

One wind turbine needs several acres of land, with a 2.2 MW turbine ideally requiring between 40 and 70 acres. In practice, financial constraints may force companies to place wind turbines much closer together.


How much space do wind turbines need?

Wind turbines need at least three rotor diameters if placed side-by-side and seven rotor diameters if placed downstream from each other. This is because the turbines create disturbances in the airflow, which affects the performance of nearby turbines if they are too close.


How much power per acre is produced on the average wind farm?

In terms of direct use, the average power output of a wind farm is about 0.4 MW per acre. When the total land area of the wind farm is accounted for, the average power output is about 0.012 MW per acre.


Editorial Contributors
avatar for George Duval

George Duval

George Duval is a writer and expert in sustainability and environmental studies. After graduating with a B.A. in Sustainability from Florida International University, George began dedicating his life to researching new ways to make the world a greener place. His expertise ranges from organic gardening, to renewable energy, to eating plant-based diets. He is currently writing and editing for a number of publications, most of which focus on the environment.

Learn More